
Be Smart!Be Smart!
or

What they don’t teach you What they don’t teach you
about software at schoolabout software at school

Ivar Jacobson
with

Ian Spence, Pan Wei Ng and Kurt BittnerIan Spence, Pan Wei Ng and Kurt Bittner

ivar@ivarjacobson.com

www.ivarblog.comwww.ivarblog.com

Your goal is the same as always!

Good

Software

Good Software, Quickly and at Low Cost!Good Software, Quickly and at Low Cost!

© 2008 Ivar Jacobson International 2

What it takes

QuicklyQuickly
Competent & Motivated People

Low CostLow Cost
Large Scale Reuse of Components

Good SoftwareGood Software
Useful Extensible Reliable

© 2008 Ivar Jacobson International 3

What it takes

Quickly
What they don’t

Quickly
Competent & Motivated PeopleWhat they don’t

teach you about Low Costteach you about Low Cost
Large Scale Reuse of Components

teach you about

software at school
Good Software

software at school
☺Good Software

Useful Extensible Reliable
☺

One major obstacle…we are a fashion industry

Software Development is driven by

fashions and fadsfashions and fads

– Fifteen years ago it was all about OO

– Ten years ago it was about
components, UML, Unified Processcomponents, UML, Unified Process

– Five years ago it was about RUP and
CMMICMMI

– Two years ago it was about XP

– Today it is about Scrum

All good, but none is all you need This is unsmart!All good, but none is all you need This is unsmart!

The software industry keeps looking for a silver bullet

© 2008 Ivar Jacobson International 5

One major obstacle…we are a fashion industry

Yes, Software Development is driven

by fashions and fadsby fashions and fads

– Fifteen years ago it was all about OO

– Ten years ago it was about
components, UML, Unified Processcomponents, UML, Unified Process

– Five years ago it was about RUP and
CMMICMMI

– Two years ago it was about XP

– Today it is about Scrum

All good, but none is all you need This is unsmart!All good, but none is all you need This is unsmart!

The software industry keeps looking for silver bullets

© 2008 Ivar Jacobson International 6

One major obstacle…we are a fashion industry

Yes, Software Development is driven

by fashions and fadsby fashions and fads

– Fifteen years ago it was all about OO

– Ten years ago it was about
components, UML, Unified Processcomponents, UML, Unified Process

– Five years ago it was about RUP and
CMMICMMI

– Two years ago it was about XP

– Today it is about Scrum

All good, but none is all you need This is unsmart!All good, but none is all you need This is unsmart!

The software industry keeps looking for silver bullets

© 2008 Ivar Jacobson International 7

Agenda

1. What does Smart mean?

2. Smart Cases – Recognize it when you see it2. Smart Cases – Recognize it when you see it

3. How do you become Smart

4. What does Smart really mean?4. What does Smart really mean?

© 2008 Ivar Jacobson International 8

What does Smart mean?

Things should be done
as simple as possible – but no simpleras simple as possible – but no simpler

- Albert Einstein

E= mc2

This is This is
smart!

© 2008 Ivar Jacobson International 9

Smart and Intelligent?

• Being Smart is not the same thing as being

intelligentintelligent

– You can be intelligent without being smart,

and and

– You can be very smart without being very

intelligentintelligent

Mr SmartMr Smart

© 2008 Ivar Jacobson International 10

Smart and Agile?

• Being Smart is an evolution of Being Agile

– Agile means being flexible and adaptable.– Agile means being flexible and adaptable.

– Agile provide simple/lightweight starting points

– But being smart is knowing when to go – But being smart is knowing when to go

beyond agile

• Knowing when to follow the rules and when to break • Knowing when to follow the rules and when to break
them

• Knowing when to be consistent and when to change

• Knowing when to grow and when to shrink

Mr SmartMr Smart

Smart = Agile ++

© 2008 Ivar Jacobson International 11

Agenda

1. What does Smart mean?1. What does Smart mean?

2. Smart Cases – Recognize it when you see it
1. People1. People

2. Teams

3. Projects

4. Requirements

What they don’t

teach you 4. Requirements

5. Architecture

6. Modeling

7. Test

teach you

about software

at school 7. Test

8. Documentation

9. Process

10.Knowledge

at school

☺
10.Knowledge

11.Outsourcing

12.Tools

☺

3. How do you become Smart

4. What does Smart really mean?

© 2008 Ivar Jacobson International 12

www.ivarblog.com

Not smart with People

Some companies view process and tools as

more important than people

This is unsmart!This is unsmart!

A fool with a tool is still a fool but a dangerous fool

© 2008 Ivar Jacobson International 13

Smart with People

Case study: Ericsson AXE – the largest Case study: Ericsson AXE – the largest

commercial success story ever in Sweden

–We had no tools and no defined process

–Despite this, we developed components, use cases,
and a modeling language now part of UML

–This could only have been done with people – good –This could only have been done with people – good
people

This is Software is developed by people, This is
smart!

Software is developed by people,

not by process and tools.

© 2008 Ivar Jacobson International 14

Not smart with Teams

• Many software projects involve 20+ people

• Often organized into stove-pipe groups:• Often organized into stove-pipe groups:

– Requirements, Analysis, Design, Coding, Testing, etc.

This is unsmart!

Requirements Implementation TestImplementation

© 2008 Ivar Jacobson International 15

Smart with Teams

• Teams are cross-functional• Teams are cross-functional

Including analysts, developers, testers etc…

• Ideal size of the team is less than 10 people• Ideal size of the team is less than 10 people

This is This is
smart!

A software team is like a sport team with

all needed competencies to win.

© 2008 Ivar Jacobson International 16

all needed competencies to win.

Not smart with Projects

• Most companies still follow the waterfall approach

Requirements

High-Level

Design

Detailed-Level

Design
This is unsmart!

Coding

Testing

Crash!

© 2008 Ivar Jacobson International 17

Smart with Projects

• Build a skinny system to demonstrate that you have

eliminated all critical risks

• Add more capabilities on top of that skinny system

This is
smart!

Skinny System Full Fledged System

smart!

Think big, build in many steps

© 2008 Ivar Jacobson International 18

Not smart with Requirements

• Many managers (and customers) believe you can detail • Many managers (and customers) believe you can detail

all the requirements upfront...

• ...and based on these can accurately predict the cost of

Thou shalt

• ...and based on these can accurately predict the cost of

the solution

Thou shalt

work with fixed

requirements for requirements for

fixed prices
This is unsmart!

A constant in software development is that

© 2008 Ivar Jacobson International 19

requirements always change

Smart with Requirements

• Base early decisions on lightweight requirements and • Base early decisions on lightweight requirements and

detail as and when it is needed

– Use case outlines, feature lists or user stories– Use case outlines, feature lists or user stories

• Remember requirements are negotiable and priorities will

changechange

I understand your needs, let’s work
This is

I understand your needs, let’s work

together to make sure we develop

the right system for the right price.

This is
smart!

the right system for the right price.

Design your project for requirement changes

© 2008 Ivar Jacobson International 20

Not smart with Architecture

Two extremes:
Mr Enterprise

Architect on

Ivory Tower

Two extremes:

No architecture

Just Code

Ivory Tower

Just Code

Refactor later

I’ll design

everything up

This is unsmart!

everything up

front

Mr Supposedly Agile

The single most important determinant of

a software system’s quality is the quality

of its architecture

© 2008 Ivar Jacobson International

of its architecture

21

Smart with Architecture

• Focus on the skinny system• Focus on the skinny system

• But an architecture without executable code is a

hallucinationhallucination

• Refactor over releases, but large refactoring

is very costlyis very costly

Architectural

Blue Print

Skinny System Full Fledged System

Blue Print

This is
smart!

Start to build a skinny system,

add muscles in later steps

© 2008 Ivar Jacobson International 22

smart!add muscles in later steps

Not smart with Test

We have two classes of people: Developers and TestersWe have two classes of people: Developers and Testers

– Developers are the creators…it is OK to create bugs as well

– Testers are the cleaners in the software world

Testing is done as an after thought – too late and too expensive

– Testers are the cleaners in the software world

This is unsmart!

© 2008 Ivar Jacobson International 23

Smart with Test

We are all testers !We are all testers !

This is
smart!

Whatever you do you are not done

until you have verified

© 2008 Ivar Jacobson International 24

until you have verified

that you did what you wanted to do

Not smart with Documentation

• There has been an over-emphasis on teams producing

documentationdocumentation

Thou shalt Thou shalt

follow the document

template I give you to template I give you to

document every part of

the system.

This is unsmart!

the system.

25© 2008 Ivar Jacobson International

Smart with Documentation

Myth: The idea that you document software so people later

can read what you did.

– Law of nature: People don’t read documents– Law of nature: People don’t read documents

This is This is
smart!

Focus on the essentials - the placeholders for

conversations – people figure out the rest themselves

26© 2008 Ivar Jacobson International

conversations – people figure out the rest themselves

Not smart with Process/Methodology/Approach

Unified

Process

CMMICMMIAgile

Process

Existing Way

of Working

Project

of Working

Project

Lead

© 2008 Ivar Jacobson International 27

Not smart with Process/Methodology/Approach

Unified

Process

CMMICMMIAgile

Process

Existing Way

of Working

Project

of Working

Project

Lead

© 2008 Ivar Jacobson International 28

Not smart with Process/Methodology/Approach

Unified

Process

CMMICMMIAgile

Process

I want a new

way of working

New Way

of Working

ProjectProject

Lead

© 2008 Ivar Jacobson International 29

Not smart with Process/Methodology/Approach

We have got enough of process

Unified

Process

CMMIAgileAgile

Process

I want to have

some of CMMI

I like to have

some of

unified

process

Let me start

with Agile,

maybe
process
maybe

New Way
Does not

work

I cannot get it

together

of Working

Project

This is unsmart!

Project

Lead

© 2008 Ivar Jacobson International 30

Smart with Process/Methodology/Approach

Existing Way

of Working

Don’t throw out your baby with the bathwater:
1. start from your existing way of working, 1. start from your existing way of working,
2. find your pain points, and
3. change one practice at the time.

© 2008 Ivar Jacobson International 31

3. change one practice at the time.

Smart with Process/Methodology/Approach

And the Law of Nature: People don’t read process booksAnd the Law of Nature: People don’t read process books

So focus on the essentials, people figure out the rest

themselvesthemselves

New Way of

Working
This is

Working
smart!

Don’t throw away your baby with the bathwater:
1. start from your existing way of working, 1. start from your existing way of working,
2. find your pain points, and
3. change one practice at the time.

© 2008 Ivar Jacobson International

3. change one practice at the time.

32

Agenda

1. What does Smart mean?

2. Smart Cases – Recognize it when you see it2. Smart Cases – Recognize it when you see it

3. How do you become Smart

4. What does Smart really mean?4. What does Smart really mean?

© 2008 Ivar Jacobson International 33

Summary: Key Elements to Smart Cases

• People: Software is developed by people, not by process and tools.• People: Software is developed by people, not by process and tools.

• Teams: A software team is like a sport team with all needed competencies
to win.

• Project: Think big, build in many steps.

• Requirements: Design your project for requirement changes.

• Architecture: Start to build a skinny system, add muscles in later steps.• Architecture: Start to build a skinny system, add muscles in later steps.

• Modeling: Don’t duplicate the effort by modeling everything

• Testing: Whatever you do you are not done until you have verified what you • Testing: Whatever you do you are not done until you have verified what you
wanted to do.

• Documentation: Focus on the essentials - the placeholders for
conversations – people figure out the rest themselvesconversations – people figure out the rest themselves

• Process: Don’t throw away your baby with the bathwater:

1. start from your existing way of working, 1. start from your existing way of working,

2. find your pain points, and

3. change one practice at the time.

34© 2008 Ivar Jacobson International

How do you become Smart?

• You need knowledge in good (maybe best) practices• You need knowledge in good (maybe best) practices

– There are 100’s of practices, some of them are good

Risk-Driven
Iterative

Development

Test-Driven
Development

Business
Modeling

Scrum Product-Line
Engineering

Systems
Engineering

Use-Case
Driven

Development

Robustness
Analysis

Aspect
Orientation

Retro-
spectives

Business Process
Re-Engineering

Pair

ProgrammingDevelopment Programming

• And you need experience in using them

Use-Case
Modeling

User StoriesPSP SOA Prince2 Program
Management

© 2008 Ivar Jacobson International

• And you need experience in using them

35

How do you become Smart?

• You need knowledge in good (maybe best) practices• You need knowledge in good (maybe best) practices

– There are 100’s of practices, some of them are good

Risk-Driven
Iterative

Development

Test-Driven
Development

Business
Modeling

Scrum Product-Line
Engineering

Systems
Engineering

Use-Case
Driven

Development

Robustness
Analysis

Aspect
Orientation

Retro-
spectives

Business Process
Re-Engineering

Pair

ProgrammingDevelopment Programming

• And you need experience in using them

Use-Case
Modeling

User StoriesPSP SOA Prince2 Program
Management

© 2008 Ivar Jacobson International

• And you need experience in using them

36

How do you become Smart?

• You need knowledge in good (maybe best) practices• You need knowledge in good (maybe best) practices

– There are 100’s of practices, some of them are good

Risk-Driven
Iterative

Development

Test-Driven
Development

Business
Modeling

Scrum Product-Line
Engineering

Systems
Engineering

Use-Case
Driven

Development

Robustness
Analysis

Aspect
Orientation

Retro-
spectives

Business Process
Re-Engineering

Pair

ProgrammingDevelopment Programming

• And you need experience in using them

Use-Case
Modeling

User StoriesPSP SOA Prince2 Program
Management

© 2008 Ivar Jacobson International

• And you need experience in using them

37

Agenda

1. What does Smart mean?

2. Smart Cases – Recognize it when you see it2. Smart Cases – Recognize it when you see it

3. How do you become Smart

4. What does Smart really mean?4. What does Smart really mean?

© 2008 Ivar Jacobson International 38

What does Smart really mean?

• If you didn’t get what smart is so far let me summarize it to

youyou

© 2008 Ivar Jacobson International 39

Of course, eventually it comes back to you, but

We can all We can all
become become
smarter.smarter.

© 2008 Ivar Jacobson International 40

Thank Thank
YouYou

Contact me at ivar@ivarjacobson.com

© 2008 Ivar Jacobson International 41

Contact me at ivar@ivarjacobson.com

